
Analytically Learning Variational Auto-Encoders

Paul Christiano∗ David Matolcsi
david@alignment.org

George Robinson
george@alignment.org

Abstract

Is it possible to understand the internal behaviour of a model without sampling
inputs and passing those inputs through the model? We present a framework in
which we can learn a representation for the distribution of activations in a simple
neural network. This representation takes the form of a variational auto-encoder
with specific assumptions on the family of distributions which we fit to the model
via the encoder and decoder. Our contribution is to show that the loss of this
specific autoencoder can be computed analytically, and so sampling the network
is not required to minimize the representation loss.

1 Introduction

An auto-encoder is a simple neural network typically designed to learn efficient representations of
data - which during interpretability tasks is often the activations of some layer of a larger neural
network. The first part of the auto-encoder is an encoder and the second part is a decoder (each of
which may be one or more layers deep), and the layer in between these is typically referred to as the
latent space, or feature space, of the auto-encoder. These two parts are trained together to recover the
identity function in such a way that the latent space carries a simplified representation of the data.
Perhaps the best classical comparison to this is data compression (encoding) and reconstruction
(decoding), such that compressed data carries more efficient information per bit than the original
data.

Clearly, there must be some way of ensuring that the latent representation that we learn is ‘efficient’.
In the case of Sparse Auto-encoders (SAEs), the loss function is designed such that each input is
described by just a few latent features - this has been used to identify useful feature directions in
the intermediate layers of a language model that may correspond to human-interpretable concepts
(for example see [2]). In the case of Variational Auto-encoders (VAEs, first defined in [5]), latent
distributions are learned that can then be sampled to produce a generative model (for example in
image generation, [4]). Both of these constructions train good latent representations by sampling
the network and minimising the reconstruction loss of the generative part of the auto-encoder. How-
ever, sampling based methods are clearly not sufficient to capture behaviour of the model in events
with sufficiently low probability in the training samples. It is possible that even some events with
extremely low probability are of importance to model accurately. This leads us to the question: how
can we learn latent representations without relying on sampling?

In a restricted setting, we propose a strategy for learning a good latent representation for the activa-
tions in the style of a VAE without sampling. We give an analytic calculation of the evidence lower
bound (ELBO) loss that is standard practice for VAEs. In order for this to be analytically tractable,
we make an assumption on the inital distribution of activations to the neural network, as well as a
simple form for the transition functions: each layer of the network adds at most one direction of
non-linearity (see equation (1) of Section 2.1). We then apply a VAE to each layer of this network
which models the distribution on that layer as a sum of independent features with Gaussian noise.
Our assumption on the initial distribution of activations is that it is given exactly by this form.

∗Work done while at the Alignment Research Center prior to April 2024.

1

While the applicability of this construction is currently fairly narrow, we believe that more general
architectures similar to this should allow us to better model rare events. This type of mechanistic
analysis of the structure of a neural network has occurred in other areas (for example [3] for verifiable
adversarial robustness), but our result appears to be the first use of the analytic approach to learn
latent representations in a neural network.

2 Method

In this section, we will precisely define the structure of the neural network that we are studying,
as well as the proposed architecture and distributions of the VAEs that we can analytically learn.
We also derive the lower bound objective function in this model, expanding this particularly in the
independent features case.

2.1 Problem scenario

Consider a neural network with L layers with n1, ..., nL neurons in each layer, and where the acti-
vations for each layer is related to the previous activations by a function of the form

fi : Rni → Rni+1

fi(xi) = Aixi +wiψi(⟨Aixi,ui⟩) (1)

where Ai ∈ Rni+1×ni ,xi ∈ Rni ,ui,wi ∈ Rni+1 and ψi is a quick-to-compute non-linear function,
such as ReLU or sigmoid (which may vary layer to layer). While this is a simple functional form,
any Multi-Layer Perceptron (MLP) or transformer network can be built from these simple steps
(although to perform the attention circuit for a single layer of a transformer would take many layers
with this method). For example, to reconstruct a single transition between two width n layers of an
MLP, we could reproduce each activation one by one in an auxiliary direction while remembering
the previous activations, and in the final step project to forget the previous layer and compute the
final activation.

MLP
layer k

MLP
layer k

+
one layer

k + 1 activation

· · ·

MLP
layer k

+
n− 1 layer

k + 1 activations

MLP
layer k + 1

MLP layer k k + 1

Our NN layer · · · m+ n− 1m m+ 1 m+ n

The problem we are concerned with in this paper is, given the input distribution of activations in
Rn1 , how can we approximate the distribution of activations in Rni . As discussed above, we will
learn a VAE representation of the activations at each layer, and this will be learned inductively from
the VAE modelling the previous layer. Therefore, we will now restrict ourselves to just the case of
f : Rn1 → Rn2 .

2.1.1 The Network Architecture

More precisely, our set-up is as follows: consider two random variables x1 ∈ Rn1 and x2 ∈ Rn2 .
Assume that samples from x1 are generated by a VAE in the following process from a latent random
variable z1:

1. Sample from a distribution P1(z1) called the prior; and then,
2. Generate x1 from a conditional distribution P1(x1|z1) called the likelihood.

We assume that the prior and likelihood distributions are tractable and analytic, however the marginal
P1(x1) and posterior P1(z1|x1) are then implicitly defined (via an integral over z1) and so are
infeasible to compute quickly. In addition suppose that x2 is constructed as

x2 = f(x1) = Ax1 + ψ(⟨Ax1,u⟩)w.

2

x1

z1

Layer 1 VAE

x2

Layer 2

f

θ2z2

x2

ϕ2

Layer 2 VAE

Goal: Learn θ2,ϕ2 to make
these two distributions of x2 equal.

Figure 1: On the left, we have the distribution on layer 1 modelled by a VAE trained in the previous
step (or for the initial step this is the distributional assumption we make on the inputs). Applying f
gives a distribution on layer 2 that we wish to model. We do this using the VAE model on the right.
For parameter θ2,ϕ2 we will be able to analytically compute the variational upper bound for the
KL divergence between these two distributions on the second layer and therefore be able to train the
VAE on layer 2 without sampling. Dashed lines denote the approximate posterior distributions (the
encoders).

We are interested in the following problem:

Suppose that we wish to find parameters θ so that the VAE process above with dis-
tributions P2,θ(z2) and P2,θ(x2|z2) has marginal P2,θ(x2) that closely approxi-
mates f(P1(x1)).

Notice that, as for P1, we do not directly have access to P2,θ(x2) (or indeed to f(P1(x1))) and so
we require an indirect route to minimize the approximation loss between these two distributions. As
in [5], the ability to train such latent representations without direct access to the marginals comes
from a probabilistic encoder Q2,ϕ(z2|x2) which provides an analytically tractable approximation to
the intractable posterior P2,θ(z2|x2) (note the potentially misleading notation here - there in fact is
no joint distribution Q2,ϕ(x2, z2), we are simply assigning a distribution over latents to each value
of x2).

In order to optimally approximate f(P1(x1)) with P2(x2), our aim is to minimize the cross-entropy,
which equals

H((f(P1))(x2), P2,θ(x2)) = −Ex1∼P1 [log (P2,θ (f(x1))] (2)

where f(P1) denotes the pushforward of the P1(x1) distribution by the function f .

By fitting P2,θ(z2), P2,θ(x2|z2), Q2,ϕ(z2|x2) in parallel, we can minimize a variational upper
bound for this cross entropy. The result of the optimisation over θ,ϕ is two-fold:

1. Approximation of the parameter θ will allow us to generate data from a distribution closely
resembling f(P1(x1)). Note that the parameters in θ which are used for P2,θ(z2) and
P2,θ(x2|z2) may be distinct, but we group them together into θ since they are both param-
eters for the decoder.

2. Approximation of the parameter ϕ will allow us to infer the latent variable z2 from an
observed x2.

2.2 The Evidence Lower Bound

The simple but fundamental result of variational inference is the Evidence Lower Bound (ELBO). In
words, this tells us that computing P (x) using the approximate posterior is only going to underesti-

3

mate the probability, and it does so by a factor depending on how different the approximate posterior
is to the true posterior. This difference of probability distributions is measured by Kullback-Leibler
(KL) divergence, which for two distributions P,Q is given by

DKL(P ||Q) := Ex∼P

[
log

(
P (x)

Q(x)

)]
and has the property that DKL(P ||Q) ≥ 0 with equality if and only if P = Q.
Lemma 2.1. For a fixed x, given a joint distribution P (x, z) and a distribution Q(z),

logP (x) ≥ −DKL (Q(z)||P (z)) + EQ(z) [logP (x|z)] (3)

with equality if and only if the distribution Q(z) is precisely equal to the posterior distribution
P (z|x).

Proof. According to Bayes-theorem, for every z,

P (x) =
P (z)P (x|z)
P (z|x)

Taking the logarithm of this expression and introducing the distribution Q(z) as an approximation
to P (z|x), we get

logP (x) = log

(
Q(z)

P (z|x)
P (z)

Q(z)
P (x|z)

)
= log

(
Q(z)

P (z|x)

)
− log

(
Q(z)

P (z)

)
+ logP (x|z).

Now the expectation over z ∼ Q of this expression becomes

logP (x) = DKL (Q(z)||P (z|x))−DKL (Q(z)||P (z)) + EQ(z) [logP (x|z)] ,
using the definition of KL divergence. The inequality follows from the fact that KL divergence
DKL(Q(z)||P (z|x)) is non-negative and zero if and only the two distributions are equal.

Notice in particular that the discrepancy in the bound is precisely the KL divergence of the decoder
Q(z) with the true posterior P (z|x), and so maximizing the RHS of equation (3) will maximize
logP (x) as well as fitting the decoder to the true posterior.

Applying Lemma 2.1 to our model (specifically Equation (2)) and taking the expectation over x1 ∼
P1, we arrive at the following:
Lemma 2.2.

−EP1(x1) [logP2,θ(f(x1))] ≤ EP1(x1) [DKL (Q2,ϕ(z2|f(x1))||P2,θ(z2))]

− E P1(x1)
Q2,ϕ(z2|f(x1))

[logP2,θ(f(x1)|z2)] . (4)

Proof. From Lemma 2.1, we get for any x1,

− logP2,θ (f(x1))) ≤ DKL (Q2,ϕ(z2|f(x1))||P2,θ(z2))− EQ2,ϕ(z2|f(x1)) [logP2,θ(f(x1)|z2)] .
Now we take expectations with respect to x1 ∼ P1(x1).

Definition 2.3. Let us write

Lx2
= Lx2

(θ,ϕ) := DKL (Q2,ϕ(z2|x2)||P2,θ(z2))− EQ2,ϕ(z2|x2) [logP2,θ(x2|z2)]
for the VAE loss contribution from x2, and

L = L(θ,ϕ) := EP1(x1)

[
Lf(x1)

]
for the VAE loss. This equals the RHS of Equation (4).

This simple lemma gives an upper bound, L(θ,ϕ), for the approximation loss of the pushforward
distribution f(P1(x1)) using the latent model in terms of computable quantities (in particular using
the decoder). The method will therefore proceed by minimizing the RHS of equation (4) with respect
to the parameters θ,ϕ.

4

2.3 Relation to Sparse Autoencoders

An SAE is similar to a VAE in construction but instead of the encoder and decoder being distribu-
tions, they are simply functions in the following way:

1. each vector of activations x ∈ Rn is encoded as a combination of learned features e(x) ∈
RM

≥0, where typically M ≫ n;

2. each feature vector e ∈ RM is decoded to a reconstruction for the activations, x̂(e) ∈ Rn;
3. The functions e and x̂ belong to a parameterized family and training the SAE consists of

learning these parameters.

The learning takes place using a loss function generally of the form

LSAE,S(x) := ||x− x̂(e(x))||22 + λS(e(x))

where S is a function of the feature coefficients designed to encourage sparse feature decomposition,
and λ is a sparsity coefficient that sets the balance between reconstruction loss and sparsity. The
choice of sparsity loss gives some flexibility in the framework of an SAE - most commonly an L1

sparsity is chosen, but other losses are occasionally used.
Lemma 2.4. The SAE loss function, LSAE,||·||1(x), is equal (up to an affine transformation) to the
VAE loss contribution, Lx, when we assume that

• The VAE encoder is given as a normal distribution in terms of the SAE encoder by a point
distribution Q2,ϕ(z|x) = δe(x)(z);

• The VAE decoder is given as an isotropic normal distribution P2,θ(x|z) = N (x̂(z), ρ)
around the SAE decoder;

• The VAE prior is given by a product of exponential distributions P2,θ(z) =∏M
j=1 µ exp(−µzj);

• The standard deviation ρ of the decoder and the mean µ of the prior are related to the
sparsity parameter by

2µρ = λ

Proof. Under these assumptions, the first term of Lx is

DKL

δe(x)(z)|| M∏
j=1

µ exp(−µzj)

 = − log

 M∏
j=1

µ exp(−µej(x))

 = −M log(µ)+µ

M∑
j=1

ej(x),

where we use the fact that DKL(δy(x)||P (x)) is typically interpreted as − logP (y) (equivalently
the entropy of a delta distribution is considered to be zero, as can be seen by taking the limiting
entropy of a family of distributions approaching the delta distribution). The second term of Lx is

−Ez∼δe(x)

[
log

(
1

(2πρ)M/2
exp(− 1

2ρ
||x− x̂(z)||22)

)]
=
M

2
log(2πρ) +

1

2ρ
||x− x̂(e(x))||22,

where the quantity inside the logarithm is the pdf of the normal distribution. Summing these two
terms we get

Lx =
M

2
log

(
2πρ

µ2

)
+

1

2ρ
||x− x̂(e(x))||22 + µ

M∑
j=1

ej(x)

=
M

2
log

(
2πρ

µ2

)
+

1

2ρ
LSAE,||·||1(x).

Note that since e(x)j ≥ 0, the summation in the first line is indeed equal to the L1-norm of e(x).
Notice that the normal VAE decoder is responsible for the mean squared error (reconstruction loss)
term of the SAE loss, and the exponential VAE prior is responsible for the || · ||1-sparsity penalty
term of the SAE loss.

5

We can see from this proof that a similar lemma holds for any sparsity penalty, S, provided that
exp(−S(z)) has finite integral over z ∈ RM

≥0. In addition, the corresponding VAE prior will factor
as as product distribution over the coordinates of z if and only if the sparsity penalty is of the form
S(z) =

∑M
j=1 Sj(zj).

2.4 Assuming independent latents

In this section, we give an explicit example of distributional families for the P1(z1), P2(z2) la-
tent distributions and the P1(x1|z1), P2(x2|z2) decoders and the Q2(z2|x2) encoders, such that the
L(θ,ϕ) loss from Lemma 2.2 can be analytically calculated (which will be done in the following
section).

We will assume that any function we use is Lipschitz and any one-dimensional marginal of any
distribution we deal with is supported on a bounded interval of length at most T . Thus, we can
approximate any one-dimensional distribution by representing it as fixing T

ε equally spaced bins of
ε-length, and determining the probability mass in each bin and treating the distribution as discrete
on T

ε equally spaced points.

The error we accumulate with this approximation will be O(ε) thanks to the Lipschitz-property, so
if we choose ε to be small enough, this approximation can be very fine-grained.

Other than this, we make the following assumptions about the setting:

1. Both P1(z1) and P2(z2) factor as product distributions over the coordinates of Rm1 and
Rm2 respectively, so that

P1(z1) =

m1∏
j=1

P1,j(αj), P2(z2) =

m2∏
j=1

P2,j(βj).

for z1 = (α1, α2, . . . , αm1) and z2 = (β1, β2, . . . , βm2). (Note the change of letter for the
coordinates to avoid the over use of subscripts.)

2. For every value of x2, the distribution Q2(z2|x2) factors as a product over coordinates

Q2(z2|x2) =

m2∏
j=1

Q2,j(βj |x2).

3. There exist linear maps B1 : Rm1 → Rn1 and B1 : Rm2 → Rn2 such that

P1(x1|z1) = N (B1z1, σ
2
1I), P2(x2|z2) = N (B2z2, σ

2
2I)

are isotropic normal distributions.
4. For all j, the Q2,j(βj |x2) distribution is defined by just t parameters that linearly depend

on x2:

Q2,j(βj |x2) = Q′
2,j(βj |Cjx2)

such that

• Cj ∈ Rn2×t matrix maps x2 into an Rt parameter-space where t is small.
• It takes just O(Tε) time to calculate the full distribution of Q′

2,j(βj |x2) up to the usual
T
ε bins if we are given the Cjx2 parameters.

(Example: Q2,j(βj |x2) = Q′
2,j(βj |Cjx2) is always an exponential distribution with

Cjx2 ∈ R1 being the parameter of the exponential.)

A few important things to notice:

a) The way the P1 input distribution is given to us (the sum of independent features plus
Gaussian noise), is the same format in which we model the P2 distribution. This means
that after we get a model of the P2 distribution, we can use that model as an input to model
the third layer in the same way, and so on, modelling every layer of a neural network going
forward.

6

b) We have suppressed the suffixes θ,ϕ, but in reality ({P2,j} ,B2, σ2) are the parameters of
θ and ({Cj}) are the parameters of ϕ.

3 Analytic Computation

As the main result of our paper, we will prove the following theorem to show that it is possible to
calculate and minimize the VAE loss in this particular setting without any sampling required.
Theorem 3.1. Given the assumptions above, we can analytically calculate the value of the loss from
Lemma 2.2,

L(θ,ϕ) = EP1(x1) [DKL (Q2,ϕ(z2|f(x1))||P2(z2))]− E P1(x1)
Q2,ϕ(z2|f(x1))

[logP2(f(x1)|z2)]

in time that is polynomial in T
ε ,m1,m2, n1, n2.

Remark 3.2. It’s worth noting that while the time complexity is polynomial in T
ε ,m1,m2, n1, n2,

the variable t appears in the exponent, so the computation is only fast if t is small, which corresponds
to the Q2,j(βj |x2) distributions being defined by only a few parameters.

Before we get into the proof, we will state a simple fact, then a Lemma that is foundational to all the
rest of the proof.
Fact 3.3 (Fast Convolutions). Given vectors d1,d2, . . .dm ∈ Rt and one-dimensional probability
distributions P1, P2, . . . , Pm, we define random variable x as

x =

m∑
j=1

αjdj

where each αj is sampled from Pj independently, it takes Õ
(
m(Tε)

t
)

time to calculate the distribu-
tion of x up to the usual approximations, causing just an O(mε) error.

Proof. Since the αj values are sampled independently, we just need to calculate the convolution of
the αjdj distributions. As in our usual approximations, we represent the distributions on Rt with
each coordinate’s value specified in T

ε equally spaced bins. Thus, the whole distribution is defined
on (Tε)

t points.

We first calculate the convolution of the distributions of α1d1 and α2d2, then the convolution of this
with the distribution of α3d3 and so on. Each convolution takes only O(N logN) time in the size
of the space using Fast Fourier Transform, and we do m convolutions on the (Tε)

t sized space, so
altogether the operation takes Õ

(
m(Tε)

t
)

time.

Based on this fact, we prove the following central lemma that all the rest of our calculation relies
on:
Lemma 3.4. For any collection of vectors v1,v2, . . . ,vt ∈ Rn2 , we can analytically calculate
the joint distribution of {⟨f(x1),vj⟩}1≤j≤t if x1 is sampled from P1(x1). The time required is
Õ
(
m1(

T
ε)

t+1
)
. In particular, it’s possible to fully calculate the t-dimensional Cjf(x1) distributions

in polynomial time.

Proof. We assumed that f takes the form of

f(x1) = Ax1 +wψ(⟨Ax1,u⟩)

We only need to prove that we can calculate the joint distribution D of {⟨Ax1,vj⟩}1≤j≤t and
⟨Ax1,u⟩ in Õ

(
m1(

T
ε)

t+1
)

time.

7

This is because the desired {⟨f(x1),vj⟩}1≤j≤t distribution is just the push-forward of D by the the
linear transformation

F : (a1, a2, . . . at, b) → (a1 + ⟨w,v1⟩ψ(b), a2 + ⟨w,v2⟩ψ(b), . . . at + ⟨w,vt⟩ψ(b))

function. As we track the distribution of ⟨Ax1,vj⟩ and ⟨Ax1,w⟩ in discrete distributions on T
ε

bins, there are (Tε)
t+1 values on which D is defined, so calculating the pushforward only takes

O((Tε)
t+1) time.

As for calculating the distribution of {⟨Ax1,vj⟩}1≤j≤t and ⟨Ax1,w⟩, let’s call W the matrix
whose rows are {vj} and w, and let’s call G = WA. We just want to calculate the distribution of
Gx1.

We know that P1(x1|z1) is a normal distribution N (B1z1, σ
2
1I), i.e.

x1 = B1z1 + ζ,

where ζ is an isotropic Gaussian noise with mean 0 and standard deviation σ1 that is independent of
z1. This means that

Gx1 = GB1z1 +Gζ.

The αj coordinates of z1 are independently sampled from the P1,j(αj) distributions. Let dj ∈ Rt+1

denote the jth column of the matrix GB1. This means that

GB1z1 =

m1∑
j=1

αjdj

where each αj is sampled from P1,j independently.

Then, according to Fact 3.3 (Fast Convolutions), it takes Õ
(
m1(

T
ε)

t+1
)

time to calculate the distri-
bution of GB1z1. Now we need to convolve this with the independent distribution of Gζ which is
easy to calculate, as it is just a normal distribution with a given covariance matrix. The convolution
again takes only Õ

(
(Tε)

t+1
)

time.

This means that calculating the distribution of {⟨f(x1),vj⟩}1≤i≤t indeed takes Õ
(
m1(

T
ε)

t+1
)

time.

Now we are ready to present the proof of Theorem 3.1.

Proof. Using the fact that both the P2(z2) and Q2(z2||f(x1)) distributions are coordinate-wise in-
dependent, we can see that

DKL (Q2(z2|f(x1))||P2(z2)) = EQ2(z2|f(x1))[log(Q2(z2|f(x1)))− log(P2(z2))]

=

m2∑
j=1

EQ2,j(βj |f(x1)) [log(Q2,j(βj |f(x1)))− log(P2,j(βj))]

=

m2∑
j=1

DKL (Q2,j(βj |f(x1))||P2,j(βj))

We can also observe that

P2(x2|z2) =
(

1√
2πσ2

)n2

exp

(
− 1

2σ2
||x2 −B2z2||22

)
, (5)

8

since we have assumed that P2(x2|z2) is an isotropic Gaussian distribution.

Taken together, this means that our loss function takes the form

L(θ,ϕ) = EP1(x1) [DKL (Q2(z2|f(x1))||P2(z2))]− E P1(x1)
Q2(z2|f(x1))

[logP2(f(x1)|z2)]

=

m2∑
j=1

EP1(x1) [DKL(Q2,j(βj |f(x1))||P2,j(βj))]

+
n2
2

log(2πσ2)

+
1

2σ2
E P1(x1)
Q2(z2|f(x1))

[
||f(x1)−B2(z2)||22

]
(6)

We will calculate the terms of (6) one by one.

L(θ,ϕ)

R2R1 R3

S1 S2

T2 T3T1

U2U1 U3

Figure 2: This is the diagram of the calculation we are executing. We break up L(θ,ϕ) to a sum
of three terms, then we break up some of the terms further. We give names to each term, and each
term is the sum of its children in the diagram. (Except for R3, witch equals 1

2σ2
times the sum of its

children.)

First term of (6): R1 =
∑m2

j=1 EP1(x1) [DKL(Q2,j(βj |f(x1))||P2,j(βj)]

For each 1 ≤ j ≤ m2, the Q2,j(βj |f(x1)) = Q′
2,j(βj |Cjf(x1)) distribution’s density function is

calculable in O(Tε) time from the value of Cjf(x1).

DKL(Q2,j(βj |f(x1))||P2,j(βj)) =
∑
βj

Q2,j(βj |f(x1)) log

(
Q2,j(βj |f(x1))

P2,j(βj)

)

is calculable in O(Tε) time if the P2,j(βj) and Q2,j(βj |f(x1)) distributions are given, so it’s calcu-
lable for every value of Cjf(x1).

According to Lemma 3.4, we can calculate the distributions of Cjf(x1) in polynomial time.

9

There are (Tε)
t possible values of Cjf(x1), and we know the probability distribution of these values,

so

EP1(x1) [DKL(Q2,j(βj |f(x1))||P2,j(βj)]

is calculable in polynomial time. Now doing this for every coordinate, we can calculate the value of
the third term,

m2∑
j=1

EP1(x1) [DKL(Q2,j(βj |f(x1))||P2,j(βj)]

Second term of (6): R2 = n2

2 log(2πσ2)

This term is constant.

Third term of (6): R3 = 1
2σ2

E P1(x1)
Q2(z2|f(x1))

[
||f(x1)−B2(z2)||22

]
We define

S(x2) := EQ2(z2|x2) [B2z2]

and

D(x2) := EQ2(z2|x2)

[
||B2z2 − E[B2z2]||22

]
= tr(CovQ2(z2|x2)(B2z2))

Applying these notations, the third term of (6) is equal to

2σ2R3 = E P1(x1)
Q2(z2|f(x1))

[
||f(x1)−B2(z2)||22

]
= EP1(x1) [D(f(x1))]+EP1(x1)

[
||f(x1)− S(f(x1))||22

]
(7)

First term of (7): S1 = EP1(x1) [D(f(x1))]

Since we assumed that all βj are independent,

D(f(x1)) = tr(CovQ2(z2|x2)(B2z2)) =
∑

1≤j≤m2

Hj,jVarQ2,j(βj |f(x1))(βj)

where H = BT
2 B2.

According to Lemma 3.4, we can determine the entire distribution of Cjf(x1), and for all (Tε)
t

values of Cjf(x1), we can calculate the Q2,j(βj |f(x1)) = Q′
2,j(βj |Cjf(x1)) distribution and

its variance for all j in O(Tε) time. Thus, we can calculate in polynomial time the value of
EP1(x1) [D(f(x1))].

Second term of (7): S2 = EP1(x1)

[
||f(x1)− S(f(x1))||22

]
Let’s call the jth column of the B2 matrix uj , and let

sj(x2) := EQ2,j(βj |f(x1))[βj]

Then

S(x2) = EQ2(z2|x2) [B2z2] = B2

(
EQ2(z2|x2)[z2]

)
=

m2∑
j=1

sj(x2)uj .

10

We decompose S2 as

S2 = EP1(x1)

[
||f(x1)− S(f(x1))||22

]
= EP1(x1)

[
||f(x1)||22

]
− 2

m2∑
j=1

EP1(x1)[⟨f(x1),uj⟩sj(f(x1))]

+

m2∑
j,k=1

EP1(x1) [sj(f(x1))sk(f(x1))⟨uj ,uk⟩]

(8)

First term of (8): T1 = EP1(x1)

[
||f(x1)||22

]
T1 = EP1(x1)

[
||f(x1)||22

]
= EP1(x1)

[
||Ax1 + ψ(⟨Ax1,w⟩)u||22

]
= EP1(x1)

[
||Ax1||22

]
+ 2EP1(x1) [⟨Ax1,u⟩ · ψ(⟨Ax1,w⟩)]

+ EP1(x1)

[
ψ(⟨Ax1,w⟩)2||u||22

]
(9)

First term of (9): U1 = EP1(x1)

[
||Ax1||22

]
Notice that

Ax1 = AB1z1 +Aε =

m1∑
j=1

αjrj +Aζ

where rj vectors are the columns of the AB1 matrix, αj are independently sampled from the re-
spective P1,j(αj) distributions and Aε is a normal distribution with known covariance matrix that’s
independent of everything else. Therefore we can easily compute

U1 = EP1(x1)

[
||Ax1||22

]
= ||EP1(x1) [Ax1] ||22 + tr(CovP1(x1)(Ax1))

using

EP1(x1) [Ax1] =

m1∑
j=1

rjEP1,j
[αj]

and

tr(CovP1(x1)(Ax1)) = tr(Cov(Aζ)) +

m1∑
j=1

VarP1,j
(αj)||rj ||22.

Second term of (9): U2 = 2EP1(x1) [⟨Ax1,u⟩ · ψ(⟨Ax1,w⟩)]
We already established in the proof of Lemma 3.4 that we can calculate the joint distribution of the
dot product of Ax1 with arbitrary vectors. So we can calculate the joint distribution of ⟨Ax1,u⟩
and ⟨Ax1,w⟩, from which we can calculate

U2 = 2EP1(x1) [⟨Ax1,u⟩ · ψ(⟨Ax1,w⟩)]

Second term of (9): U3 = EP1(x1)

[
ψ(⟨Ax1,w⟩)2||u||22

]
.

As above, we can calculate the distribution of ⟨Ax1,w⟩, so we can determine the value of

U3 = EP1(x1)

[
ψ(⟨Ax1,w⟩)2||u||22

]
.

11

This concludes the calculation of (9), and now we look at the other terms in (8):

Second term of (8): T2 = −2
∑m2

j=1 EP1(x1)[⟨f(x1),uj⟩sj(f(x1))]

Given Cjf(x1),we can calculate theQ2,j(βj |f(x1)) distribution, so we can calculate its expectation
s(f(x1)) too. By Lemma 3.4, we can determine the joint distribution of the t coordinates of Cjf(x1)
and ⟨f(x1),uj⟩. That’s all we need to calculate an EP1(x1)[⟨f(x1),uj⟩sj(f(x1))] term. There are
m2 terms like this, so calculating and summing them all still takes polynomial time.

Third term of (8): T3 =
∑m2

j,k=1 EP1(x1) [sj(f(x1))sk(f(x1))⟨uj ,uk⟩]

We can also calculate the joint distribution of Cjf(x1) and Cjf(x1) for any j and k, and that’s what
we need to calculate the EP1(x1) [sj(f(x1))sk(f(x1))⟨uj ,uk⟩] terms. Calculating and summingm2

2
of them still takes polynomial time. This is the final missing term of S2, so we can calculate it in
polynomial time. This concludes the computation of R3, therefore we have everything to compute
the desired L(θ,ϕ) too.

4 Conclusion

We have given a novel framework for learning representations for the activations of a particular
form of neural network. The learning procedure for this representation is analytically tractable,
in the sense that layer-by-layer we computed the loss associated to the new parameters in terms
of previously learned parameters and the coefficients of the transition functions (but crucially not
requiring any true activations of the model via sampling). The distribution on each layer is modelled
as a sum of independent features with Gaussian noise which limits the expressive power of our
representation, but we hope that in future more flexible representations will be found that still bypass
the need for sampling.

5 Discussion

This exercise was an existence proof of the applicability of analytical calculations for settings that
are more complicated than our previous work [1] on Gaussians. However, using the above presented
approach for modelling the activations of a neural net has several drawbacks. We list some of the
main obstacles to this approach working well in practice:

1. The above presented method heavily relies on the starting distribution of P1(x1) being the
sum of independent features with some additional Gaussian noise. Although the Linear
Representation Hypothesis is a common assumption in much of the existing interpretabil-
ity work, our assumption of independence among the linear features is a much stronger
assumption.
Since there are many distributions that cannot be well approximated as the sum of indepen-
dent features, this significantly decreases the reliability of our activation modelling until
we can find richer distributions for which a similar analytic method can apply.

2. This method as presented here can only deal with transition functions f that apply non-
linearity in only one direction. Alhough we can build MLPs from transition functions like
this, building a single real layer requires as many layers in our model as the width of the
network. Trying to follow the modelling through this many layers will in practice lead to
an unacceptable amount of accumulated error.

3. Minimizing the VAE loss defined in Lemma 2.2 leads to imperfect models even in the case
of very simple f functions. Notably, if f is the identity, and we have an exact description
of P1(x1), it would be reasonable to expect it from our activation model to perfectly re-
construct the the distribution of P2(x2) as being the same as the distribution of P1(x1).
However, one can show that this is not exactly true in our case, even if we can use an arbi-
trarily broad family to select the Q2,j distributions from. The best example to check is the
one where m1 = n1 = m2 = n2 = 2, and P1,1 and P1,2 are both Bernoulli-distributions
and B1’s columns (the feature vectors) subtend a small angle. Then one can empirically
check that our method doesn’t perfectly reconstruct the original distribution.

12

4. As we prove in Lemma 2.2,

H(P1(f
−1(x2)), P2,θ(x2)) = −Ex1∼P1 [log (P2,θ (f(x1))] ≤ L(θ,ϕ)

The whole reason we chose this loss function is that minimizing it gives us an upper bound
on the cross-entropy of our model of the second layer, P2,θ(x2), with the true distribution,
P1(f

−1(x2)).

However, we have no guarantees [6] boundingH(P1, P3) givenH(P1, P2) andH(P2, P3).
Thus, when we use our method repeatedly to model the next layer of a neural net based on
the model of the previous layer, we only have extremely weak guaranteed upper bound for
how far we eventually stray from the true distribution of outputs.

5. The original reason we were interested in using analytical methods for activation modelling
was that we wanted to estimate low probability events. While we showed an example of
analytic estimations working, the presented method of bounding the cross-entropy of dis-
tributions doesn’t particularly attend to low probability events. Two distributions can have
very low cross-entropy, while the probability they assign to a tail event can be drastically
different. To strengthen the method, we will need to look for ways that don’t just try to
generically model the distribution, but put special focus on modelling the parts that are
relevant to the question we want to decide. We currently consider this one of the most
important open questions in our work.

13

References

[1] Paul Christiano, Eric Neyman, and Mark Xu. Formalizing the presumption of independence,
2022.

[2] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse au-
toencoders find highly interpretable features in language models, 2023.

[3] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of inter-
val bound propagation for training verifiably robust models, 2019.

[4] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra. Draw:
A recurrent neural network for image generation, 2015.

[5] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.
[6] Solomon Kullback. Information theory and statistics p. 6, 1959.

14

